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ABSTRACT
/JThis paper is the author's contribution to the volume *Leonardt Euler-
Gedenkband 1983" to be published in Basel, Switzerland, in 1983 in honor of
Euler's bicentenial. It is mainly devoted to the exponential Euler spline
sg(x;t) of degree n to the base t, and also sketches in §7 their role in
cardinal spline interpolation. It also presents two new items: 1. In §3 a
simplified derivation of the recursive relation
s xt) = [X s (umraw/f] s _(umia  (ny2)
is given, a relation already discussed in Reference [10). 2. In §6 the
approximation of the exponential function 2% by sn(x;t) is made more
effective by a prelimi-..ry subdivision of the interval [0,1] into 2%
parts. By this device our approximation becomes competi;ive with the modern
approximations of 2X in [0,1] by rational functions. The paper has two
aims: 1. As a tribute to Euler, 2. To make the exponential Euler splines
Si(x;t) better known.
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SIGNIFICANCE AND EXPLANATION

This paper is the author's contribution to the volume "Leonardt Euler -

Gedenkband 1983" to be published in Basel, Switzerland, in 1983 in honor of
Euler's bicentenial. It has two aims: 1, As a tribute to Euler, 2. To point

: out Euler's contributions to the subjects of the title.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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EULER'S CONTRIBUTION TO CARDINAL SPLINE INTERPOLATION:
THE EXPONENTIAL EULER SPLINES

1. J. Schoenberg

Introduction. In my monograph [8] of 1973, dedicated to Euler, I already discussed

the subjects of the title. On the occasion of the bicentenial of Leonardt Euler we present
here an outline of these results, which seem to fit well in what we think of as Eulerian

Mathematics.

Our main subject are the exponential Euler splines. In §1 we define them, and §2
shows their close connection with the Eulerian polynomials. In §3 we derive in a simpler
way a recursive construction already described in [10]. §§4 and 5 show that the
exponential Euler splines of base t converge to the exponential function t* as their
degree tends to infinity. §6 presents an application to the computation of f(x) = 2%,
Finally, in §7 we sketch the role of the exponential splines in the problem of cardinal
spline interpolation.

1. The_exponential Euler splines. We need a few definitions. Let Sn = {sn(x)}

denote the class of cardinal splines S,(x) of degree n (2 1). This means that S (x)
reduces to a polynomial of degree < n in each unit interval (v, v+1) (v e Z), with the

strong restriction that

(1.1) s _(x) e Ml .

In particular S,(x) e & means that 51(x) is a continuous piecewise linear function
with possible vertices (or "knots") at the integers. Early in this century it was found

convenient to represent S,(x) as a linear combination of shifted versions of the "roof-

function”

Qz(x) =x in (0,1, = 2 - x in (1,2}, = 0 elsewhere

’

so that
L

s,(x) = ¥ ©;0,(x = 3)

represents uniquely every element of S,.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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This extends to the class Sn in terms of the forward D-spline
1
1 Vntd n
(1.2) Q (%) = I <« ([ x=-w, ,

where u, = max(0,u). Like Q,{x), the B-spline Qn"(x) has remarkable properties:
(1.3) Quyq(x) > 0 in (0,n+1), = 0 outside (0,n+1) .

Moreover, it is bell~-shaped in (0,n+1) and symmetric in its midpoint, i.e.

(1.4) Qnﬂ(" +1~-x)= Qn"(x) .

Clearly Q_,,(x - j) @S = for all integers j, and thess are the elements of S, of
least support. Again, every element S(x) € Sn admits a unique “standard® representation
of the form

-
(1.5) 8(x) = c (x = 3) .
ey tx-

Definition 1: The exponentisl splines of base t. Let ¢ be s yeal or complex
number ¥ 0, and let

(1.6) oouey =] o x-9 .

We call this function the exponential spline of degree n and base t.

Clearly
-zl -4) = L eI -
On(xﬂ:e) e Qnﬂ(x#l j)=L¢ QM'(x-j) t On(x.e) o
Using the representation (1.5) and its unicity, it is easily shown ([7, Lesma 2]) that the

most general solution of the functional equation

(1.7) S(x + 1) = t 8(x), where 8(x) @ S,

is given by

(1.8) 8(x) = coOn(xn). (C is a constant) .
1t

(1.9) t = Jelet®, wcacT, tA0 ,

let us try to interpolate the exponential function
(1.10) t = (g)* S %
at the integers by the function (1.8) so that

(1.11) S{(v) = tv for all integers Vv .
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Because of (1.7) it suffices to determine the constant C in (1.8) so that S(0) = 1. The

answer is clearly

On(x;t)

(1.12) S(x) = —— ,
On(Olt)

but this is possible if and only if On(Opt) # 0. When this holds is easily decided, for
by (1.6) and (1.4) we have
= j - = j
On(Ort) Tt Qn+1( j) It Qn+1(n+1+j) ‘
and setting n+j = v we find that

1

Q.

n-
V=n -n
(1.13) o (05t) It Q , v) = ¢ ]

v
1(v+1)t .
v V=0

The result: The interpolation (1.11) with S(x) of the form (1.8) is possible if and only

Af
n-1 3
(1.14) I (e) = nt g Q. (3Nt £ 0 .

The polynomial ﬂn(t) defined by (1.14) is called the Euler-Frobenius polynomial. It is a

reciprocal monic polynomial having integer coefficients and having only negative and simple
A:

zeros i

(1.15) A <A ool Az <A

et _ <o) .

n 1
Definition 2: The exponential Euler splines S.(xit). Assuming that f (t) # 0,

&=

hence that
(1.16) .n(O;t) #0 ,
we define

On(x;t)
(1.17) Sn(xyt) = ;;TETET

To summarize S (x;jt) 1is the unique cardinal spline interpolant of the exponential

X

t satisfying the functional equation

(1.18) sn(x+1:t) =t sn(x;t), (x @ R) .

-3~
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2. The construction of S (x;t) How do we .
SRR AR n

in_terms of gg;gggggagg;xnomialg.

construct S (x;t)? Clearly, its expression by (1.17) is too laborious. This is where

Euler comes in. Following Euler, we define the an(t) by the expansion (]
® a (t)
sL.pan
t-e 0

The a (t) are rational functions of the form

I ()
n

(2.2) a (t) =
n (e-1)"

where Hn(t) are the polynomials (1.14). For a proof see [7, Lemma 7 on page 391]. The

ﬂn(t) may also be defined by Euler'’s expansions

I_(¢) -
(2.3) i) (v L
(1-t) V=0

We find that

2
Ho(t) = n1(t) =1, Hz(t) =t + 1, Hs(t) =t + 4t + 1,

n‘(t) - t3 + 11:2 + 11t + 1, ﬂs(t) = t4 + 26t3 + 66t2 + 26t + 1

On multiplying (2.1) by e*Z we obtain Euler's generating function

L]
t-1  xz An(x’t) .
P R
t-e 0

(2.4)

of the exponential Euler polynomials
- D n n=1 n n=2 ces
(2.5) Alxie) = x" + (1)a‘(t)x + (2).2(:)x + +atv)

which evidently form an Appell sequence (see (2, Chap. VII, 178]). L. Carlitz (1] writes

An(x;t) - Hn(xlt) and calls them Eulerian polynomials. See also (1] for extensive

references.

The coefficients a,(t) admit a recursive computation: Multiplying (2.1) by t-e®

we obtain
n .
“talt) =~ =1+ (1)a‘(t) *oeee b))
t=-1= 2 ol z - Z N z
0 o n

.
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and by identifying coefficients of z" we obtain

(2.6) 1+ (?).‘(e) + (:]az(t) +eccva () =ra (), (n=1,2,..) ,
which show that

‘ n LN 2 n J =
(2.7) a(t) == {1+ (‘)31(t) + + (n_1Jan_1(:)}, (n=1,2,...) .

Let us remember that we wish to construct S, (x;t), and that we may exclude the
trivial case when t = 1, because evidently sn(xsl) = 1 for all x. We ask: What can

we_say about the function F(x) defined by

(2.8) F(x) = An(xtt) if 0 < x<1
and satisfying
(2.9) F(x+1) = t F(x) for all x ?
We claim that
(2.10) Fix) e c™(m) .

Indeed, from (2.10), and using (2.9) and (2.8), we obtain by differentiation of (2.9)
and setting x = 0, that we must have that
(2.11) AtV (i = e al e, vt for nz 1
However, these relations, together with the fact that An(x;t) is monic, are known
characteristic properties of An(x:t), which are derived from (2.4) by Vv
differentiations with -espect to x, subsequently setting x =~ 0 and x = 1 in the
result. By our result (1.8) concerning (1.7), it follows that
(2.12) Fi(x) = C 0n(x:t) .

Assuming {1.14), this proves that Sn(x;t) = An(xyt)/An(O;t) in [0,1), hence that

(2.13) s,0t) = (x" + (:)a1(t)xn-‘ +eesva(t)l/a ), if 0 gxg1 .

Remarks. 1. 1In {1, page 256, (4.5)] Carlitz already defined the cardinal spline
F(x) satisfying (2.8) and (2.9).

2. The continuity requirement (2.11) has been recently stated as a general principle
concerning the solutions of certain functional equations in the paper [3].

3. A_recursive construction
BEIXEINNTEERRDD XX TR

of the exponential Euler spline S (x;t). This is the

subject of my recent paper [10], with the modification that there the sequence
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1 9
sztn =1t) s‘(x’ 21:) .

(n=1)1 °

(3.1) s'(xn:), . (l,:) ' ls(xn) 0 . ('!lt) s see
22 4 2
]
is recursively constructed. We assume t to be non-negative, t ¥ 0. Por the B-spline ‘
{
1 ? v n-1 i
(3.2) 9 (x) = = 1 (=17°(0) (x = W) ;

we easily verify by integration and summation by parts the relation
x+1
(3.3) I3 quuiau = g (xe1)

For the exponential spline (1.6) this implies that

x=3+1

=3 Qn(u)du

[:” 0n_1(urt)du - )j: ¢ [:" Qn(“'ﬁ)dll - § tj )

- :2, th , teget) = ¢ )’: tho , tx-3)

and therefore
x¢+1
(3.4) fx 0n_1(mt)dn =t On(xn) .
For the exponential Buler spline this implies our first proposition

I. If t is not negative, then

x+1 1
(3.5) s (at) = [ sn_'(wt)d\lllo 8, (wt)d, (n=2,3....) .

This is remarkable recursive construction: BStarting from the linear Buler spline

84(xst), (3.5) recursively furnishes all higher degree sn(xn:). Also notice that (3.5)
does not depend on t explicitly.

We also need the following result established in [8, Lecutre 2, §5):

II. 1f

(3.6) t=leled®, vcacr, ey, ,

which implies that negative values of t are excluded, then
(3.7) On(xvt) #0 for all real x .

The reason given in (8, loc.cit.] is as follows: 1. If ¢t > 0, then the curve of the

complex plane

-— -




(3.8) Fr:z= Qn(xtt) (=® < x ¢ +»)

is clearly contained within the positive half of the real axis. 2. If in (3.6) we have
0 <a <%, say, then the curve (3.8) spirals convexly about the origin, never assuming the
value z = 0. This is shown by induction in n.

4. 3

ggties ex ggﬁgg_gg sn(xyt). Again we assume that (3.6) holds. Already in (7,

§7] we derived by means of residue theory the following proposition

III. Let
(4.1) Y=1logt = log |[t|] + ia, hence t = eY .
and let (3.6) hold. Then
o« o«
(4.2) Sn(xtt) = Z ! v e(Y+ 2'1k’t// I 1 vl
-» (Y + 2nik) - (Y+ 27ik)

An alternative derivation of (4.2) uses the recursive relation (3.5) and proceeds as
follows. To simplify notations we write
(4.3) S,(x) = s (x3¢) .
Observe that S,(x) is the linear spline that interpolates the sequence (tk), and so

Sy(x) = 14 (e=1)x 1f 0 ¢xg1 .

However s,(x)t."x is periodic with period 1, because s,(xﬂ)t:""1 = £8,(x) £ -

s,(x)t'x = S'(x)o-Yx. Let its Fourier series be si(x)e-Yx = 2 a e2Tikx For its
k
coefficients we find by an integration by parts (see [10, §5]) that
2
- (;—1) 1 >
T v+ 2mik)
and therefore
o
(t-1)2 oY+ 2mik)x

(4.4) 8,(x) =
! 2% e (v+ 2mik)?

Since S1(x) is up to a non-vanishing factor identical with 01(x;t), it suffices, by
(3.5), to perform the operation f:"(')du on s'(x) a total of n-1 times, and to

divide the final result by its value at x=0. However

[ e 2mikduy e'-1_ _(ve2nik)x

(4.5) x Yeznik © .

-7-
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Performing the operations as described on (4.4), we obtain the fraction (4.2).
5. S (x3t) * t* ag n* = for non-negative t. Let us assume (3.6), so that t is
n =m EXSTRXXWTSS LT WIS
non-negative, and write (4.2) as

= ]
- 1
(S.1) Sn(xtt)t X a 2 ‘__’T e2rik7 Z —
- (Y+2%ik) -® (Y+2%ik)

We multiply each of the two series of this fraction by Yn+11 except for the two terms
for k = 0, which are = 1 in both series, the k-th terms in both series are in absolute
value = |v/(v+2vik) ™', writing

(5.2) p = loglt|, hence Y = logt = p + ia ,

we find that

2.2
|y/(y+2uk)|2 = |(p + 1c)|2/|p + 1(0+2uk)|2 = g ta

p +(a+21lk)2
From -%¥ < a < ¥ we find that
(5.3) la + 27k| 22 - la] > |a}
and therefore

2,2 1
(5.4) max [Y/(y+2%ik}| = (z_pia_)/z’ J

> < 1

k po+(2%~]af)
by (5.3). Moreover 61: > 0, because p and & can not both vanish, as we assume that
ty¥ 1.

Now it should be clear that the right side of (5.1) is = 1 + 0(5:+‘) and that we may

write
8 (x;t)
(5.5) 2 -1- 0(6"”) uniformly for x € R .
tx t

Notice that the approximation (5.5) deteriorates as a approaches t ¥ because Gt
approaches 1. As the constant in front of the 0O-term of (5.5) depends on t, but not

on x and not on n, we have established the proposition

Iv. 1If t is not negative, then
x fax

{S5.6) lim 8 (x;t) = t* = 1el” e for all real x .
n for all real
n+e

-8-
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6. The computation of the exponential function £(x) = 2%, can the approximation
(2.13), for t = 2, be used to compute 2¥ in view of the convergence theorem (5.6)? In
{7, §11], and again in (10, §5) 1 stated that this seems practicable. Actually we find
that this method does not compete in accuracy with the modern approximations of 2* in

{0,1] by appropriate rational functions (see [5]). However, we will show that by

appropriate binary subdivisions of [0,1] our approach becomes competitive.

We introduce the natural number r and change variables by

(6.1) x = 1; z .,

2
defining F(z) by

r
(6.2) Flz) = 222 = 2% = £(x) .
For the base

r

(6.3) v =22

we have F(z) = tz, and this we can approximate, in view of (5.6), by

r
(6.4) Flz) = § (2 272
Setting
r r
(6.5) z=2 x=[2"x] +8=v+0, (0<68<c ,
where (*] has its usual meaning, and
(6.6) v=[2x] .
However
r r r
1
(6.7) S (z;2 /2 ) = s _(v+8;¢) = t’s (8;¢) = V% s (0;21/2 ),
n n n n
and by (6.2) and (6.4) we have
T r
(6.8) 2% - gV/? sn(e;zv2 ) .
We recall that hy (2.13) we have
6.9 =
(6.9) 5,(81t) PLet® (0B,
where pn,r(“) is the polynomial
P (w) = (0" ¢ (Da 0™ s eer v 2 (0)l/a ()
n,r 1771 n n
(6.10)
= (n) LR ] (n) n
1+ c1lr u + + Cn,r u ]
-9




whogse coefficients are compute by Euler's algorithm (2.7).
How close does Sn(en) approximate te? In (5.4) we have, by (6.3) and (5.2), that

a=0 and p = logit| = (log 2)/2’, and so, dropping the term = 1 in the denominator,

we have
%
(6.11) 5 = : 3 c¢leg2
4 1 (2 2 2n2
! log 2
i and (5.5) shows that
3 -] (elt) nt+
; (6.12) B — - 1= o(les;a) .
. t 272

We conclude that the approximation (6.8) will be close, provided that either n or r, or
both, are of some size.

We need the numerical values of the coefficients of the polynomial (6.10). I am
indebted to Fred Sauer, of the MRC Computing Staff, for a 30 place table of the
coefficients
(6.13) ci?l for 1= 1,000t B =3,000,20) £ =0,1,00.,16 .

Computing with a hand-held calculator, we record here only their values for r = 4 and n
! = 3 to 12 decimal places:
3) (3)

: (3)
; (6.14) c1'4 04332 16979 37, c2,4 °3.4

These should give in (6.8) about eight decimal places of accuracy.

= ,00093 82380 41, = .00001 38464 49 .

As an example we compute f(¥) = 2'. Here x =%, z = 2"x = 167 = 50.26548 246, and

80 V = 50, 0 = .26548 24574. Since 50/16 = (2° + 29 + 2)/2% = 2 ¢+ 1 4+ 273 = 3 ¢+ /8,

‘ (6.8) becomes

v _ ,50/16 1/8

2 F(O) ~ 82 ® .

P34
We find from (6.14) that Py 4(9) = 1,01156 7538, and finally
i

2" = 8,82497 7778
J

which is accurate to seven decimals. In this computation we have approximated 2* the

interpolating cubic spline sn(‘le;Z‘/‘s) having 2‘ = 16 components in the interval

(0,1]. In implementing (6.8) it is important to represent the integer v = lzrx] in -
r
/2

— ———

binary notation, as we have done above. In this way 2v appears as a polynomial in

-10-
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r
2"/2 having only coefficients 0 or 1. For r =4 and n = 9 Sauer's table of (6.13)

gives a result accurate to 21 decimals.

7. §3£2§22$-393$23 interpolation. In this last section we sketch a solution of the

problem of cardinal spline interpolation [8, Lecture 4):

The (yj) being prescribed, we_wish to find

(7.1) S(x) e
such that
(7.2) s(j) = Yj for all integers 3j .

This problem is trivial if n = 1 and we may assume n > 2. We further restrict the

discussion to the case when

(7.3) the data (yj) and the solution S(x) are of power growth ,

meaning that ijl - OljlY as j * ™ for some Y 2 0, and that |[S(x)| = lel6 as
x * t», for some § 2 0. We shall deal only with the question of uniqueness of the
solution, because the exponential splines On(x1t) play a decisive role.

We need the null-space
(7.4) S: = {s(x); S(x) e Sn' S(j) = 0 for all integers 3}
and state

Lemma 1. The linear subspace Sg, gg,sn, has the dimension n -~ 1 and is spanned

by the n - 1 exponential splines

(7.5) §,(x) = On(xﬂ\,) (V= 1,.0s,n=1)

’

where the Av are the zeros (1.15) of the polynomial
n-

1
- 3
(7.6) I (t) = nt g Q. (307 .

That the s“(x), called the eigengplines of Sn, are elements of Sg follows from

(1.13) and the functional equations
(7.7) 8, (x+1) = Xvsv(x), (V=1,.00,n-1) .

Indeed, sv(o) = 0 implies that sv(j) = 0 for all j. For a proof of Lemma 1 see (8,

Lecture 4, §3).

-1~
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The polynomial ﬂn(t) being reciprocal, we have
(7.8) Xn_1 A1 = An—2 Xz = eee = 1
and there is an important distinction depending on the parity of n.

1. n = 2m=1 is odd. From the simplicity of the Av it follows that

(7.9) Azu-z C o0 Am < -1« Am_’ C o900 A1 <0 .

By Lemma 1 S(x) € : implies that

n=-1
(7.10) stx) = [ ¢, s,(x) .
1

The inequalities (7.9) and the behavior of the splines (7.5) at +® and =-* implies that

(7.10) is of power growth if and only if all c, = 0. This is the basis of our

result

first

V. 1f n=2m-1 3is odd, and the (yj) are of power growth, then there exists a

unigue S{x) € S of power growth satisfying (7.2).

2. n=2m jis even. Now we find by (7.8) that the Av satisfy

(7.11) Azn_‘ ¢ see ¢ xm” < Am - -1« xm_‘ ¢ se0 x1 <0 ,
80 that
(7.12) §,(x) = On(xr-ll

is one of the eigensplines. It satisfies Spix+1) = =Sp(x), hence has period

= 2.

NB8rlund [6, Chap. 2, §16] attributes it to Hermite and Sonine. The bounded sn(x) is a

counter-example to the proposition V for even n.
We now abandon the class Sn and consider the new class

. 1
(7.13) sn {s(x); s(x + 3) e sn) .

This is the class of midpoint cardinal splines having their knots at x = j+ %.

L4
Sn we have the midpoint exponential splines defined by

L ]
(7.14) 0n(xrt) - On(x + %1 t) .

When are these element of the null-space

*
(7.15) sn° = {s(x); S(x) es;; S(§) = 0 for all 4} ?

This depends on the vanishing of

-12-
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i * -0 (L) = 3 1.5 - 3 -1
; . On(o:t) Ontz;c) It 2,103 3) Zt Qn+1(n+1 3 +3)

n
ez ¢dn LI 3
; ‘ el G =t EQ

1
n+1(j * E)t

the polynomial
n

v *
1 (7.16) My =2"nt Jo (3+Ded
: 0

having n simple and negative zeros U,

(7.17) u <y

< < .
n n=-1 e < u2 < 0

1
The analogue of Lemma 1 is

*
which follows from (1.3). This shows that the eigensplines of Sn depend on the zeros of

which is called the midpoint Euler-Frobenius lynomial. Again it is monic and reciprocal

the n midpoint exponential splines

- L ] 1
(7.18) Sv(x) = On(x;uv) = 0n(x + E'HV)’ (V= 1,...,n) .
*®,
It follows that the general element of Sn0 is

n -
(7.19) stx) = [ c s (x) .
1

The role of the parity of n is now reversed, because again we have

(7.20) WM, =

= ees = §

un—1u2
1. n =2m-1 is odd. Now (7.17) and (7.20) show that

1 E+ 47

(7.21) u2n-1 € oee ¢ um+1 < um = =1 <y

m_‘<"‘(l.l <o ,

1

L
so that Sn0 contains the periodic, hence bounded, element

]
(7.22) S (x) = & (x+ 3y -1)

*
and there can be no unicity for the problem (7.2) within the subclass of Sn

growth.

2. n=2m is even. Now (7.17) becomes

(7.23) u2m € oo um+

1 < =1 < um € see ¢ u1 <0
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Lemma 2. The linear subspace Sno, of Sn, is of dimension n and it is spanned by

of power

E Y RO T T

el




and these inequalities allow us to show that if (7.19) is of power growth, then all
<, = 0. These results lead to the analogue of proposition V:

Vi. 1f n=2m is even, and (yj) are of r_growth, then e_exists a unique

s(x) e S; of power growth satisfying (7.2).

Conclggggs_gq_ﬁgl_:g. 1. The special case when the data (y’) are bounded, and the

solution S8(x) is to be bounded, the propositions V and VI were first established by

Subbotin [11). 2. If in (7.2) we have Yy - (-l)j for all j, then the solution of (7.2)
is the function

On(x:-'l)/Qn(o;-‘l) if n is 0dd ,
(7.24) En(x) = 1 1
On(x* -2-1-1)/0.\(51-1) if n is even .

It is called the EBuler spline of degree n, and it is the solution of the famous Landau~

Kolmogorov extremum problem (see (9] for references).
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ABSTRACT (continued)

x+1 1
s, (xit) = [T70 5 (weldw[ s _ (ut)du  (n > 2)

is given, a relation already discussed in Reference [10]. 2. In 56 the approxi-
mation of the exponential function 2* by sn(x:t) is made more effective

by a preliminary subdivision of the interval [0,1) into 2F parts. By this
device our approximation becomes competitive with the modern approximations of
2* in [0,1]) by rational functions. The paper has two aims: 1. As a tribute

to Euler, 2. To make the exponential Euler splines sn (x;t) better known.
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